THE WORLD'S FIRST SYSTEMATIC REVIEW ON AGARICUS BISPORUS

What's so special about Australia's most popular fungi?

What you need to know about mushrooms

NOT A VEGETABLE
But contains:
resistant starch
phytonutrients
potassium

NOT AN ANIMAL But contains: vitamin B12 vitamin D

NOT A WHOLE GRAIN
But contains:
beta-glucans
prebiotics
riboflavin

NOT A NUT But contains: copper selenium

Mushrooms are orange. Mey are unique.

What's the research gap?

Over
300
reviews exist on mushrooms

Yet
O
specifically on
Agaricus bisporus

What is Agaricus bisporus?

It's the world's most popular mushroom and includes[1]:

FUN-gi FACT

Button, cup and flat mushrooms all come from the same mushroom, just grown for different lengths of time.

What was done?

Nutrition Research Australia conducted the world's first systematic review on *Agaricus bisporus*, to investigate its key bioactive components and effects on health in humans.

5 databases searched up to June 2019

Medline

Embase

Scopus CINHAL

Cochrane Library

5,707 records found

1,037
full-text articles screened

68
articles included in the review

What was found?

53

articles on bioactive components

ANTIOXIDANTS

BETA-GLUCANS

CHITIN

D VITAMIN

ERGOTHIONEINE

articles on human health effects

- Vitamin D status
- Inflammation
- Satiety
- Cancer risk & its metabolites
- Gut health
- Cardiometabolic health

What are the key bioatives in *Agaricus bisporus?*

How much?

in cooking?

A soluble fibre, commonly found in oats, that has cholesterol lowering properties^[5].

Kaempferol in Agaricus bisporus vs. Strawberries (/100g wet weight)

How to maintain Cook for a shorter amount of time[3, 4].

Beta-glucans in *Agaricus bisporus* vs. Oats (/100g dry weight)

Not affected by cooking^[6].

CHITIN

A unique prebiotic polysaccharide that makes up the cell wall of fungi - it's like cellulose in plants^[7]. It's not found in any other foods, except for insects and yeasts.

0.1 - 1.4mg

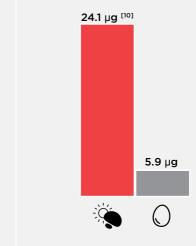
Insects (/100g wet weight)[8]

Increases with cooking, regard-

less of whether the mushroom

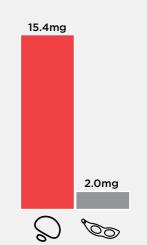
was fresh, frozen or canned[9].

5 - 1,200mg



VITAMIN D

The sunshine vitamin. Mushrooms naturally contain vitamin D2, with levels increased up to 10 times after the surface of the mushroom is exposed to UVB light (i.e. sunlight)^[10].


ERGOTHIONEINE

An antioxidant that can only be made by some fungi and bacteria^[13]. Mushrooms are the largest dietary source.

Chitin in Agaricus bisporus vs. Edible Vitamin D equivalents in UV-exposed Agaricus bisporus vs. Raw Eggs (/100g wet weight)[11]

> Using UV-exposed mushrooms, squeeze some lemon juice in the pan, cook at lower temperatures and for shorter times[12].

Ergothioneine in *Agaricus bisporus* vs. Tempeh (/100g dry weight)

FUN-gi FACT

The stem is a valuable

source of bioactives.

Cook for a shorter amount of time[3, 4].

+ More vitamin D[14]

+ More ergothioneine^[16]

WHICH TYPE IS BEST?

WHICH PART IS BEST?

Don't waste it!

more antioxidants in the cap (vs the stem)[17, 18]

more beta-glucans in the stem (vs the cap)[19]

What is the evidence for Agaricus bisporus and human health?

	7 health outcomes	Reference	Study Type	Quality of Study*	Sample Size	Population	Intervention	Control	Result
	1 Vitamin D status	Stephensen et al. (2012) ^[20]	RCT	Higher	29	Healthy adults	88 g/day UV white button mushrooms for 6 wks	Non-UV white button	↑ serum 25(OH)D
		Keegan et al. (2013) ^[21]	RCT	Lower	25	Healthy adults	2000 IU vit D/day UV white button mushroom extract for 12 wks	Vitamin D supplement	† serum 25(OH)D (equivalent to a supplement)
		Urbain et al. (2011) ^[22]	RCT	Higher	26	Healthy adults	28 000 IU vit D/day UV white button mushrooms for 5 wks	Non-UV white button + placebo supplement	† serum 25(OH)D
		Shanely et al. (2014) ^[23]	RCT	Neutral	34	Athletes insufficient in vitamin D	600 IU vit D/day UV powdered portobello mushroom for 6 wks	Placebo	† serum 25(OH)D
	2 Inflammation	Calvo et al. (2016) ^[24]	RCT	Higher	37	Adults with metabolic syndrome	100 g/day UV white button mushrooms for 16 wks	Vitamin D supplement	↑ ergothioneine, ORAC, adiponectin ↓ oxidative stress factors
		Volman et al. (2010) ^[25]	RCT	Neutral	56	Adults with hyper- cholesterolemia	Juice with 5 g/day of α -glucans extracted from white button mushrooms for 5 wks		↓ TNFα ↔ IL-1b and IL-6
		Weigand-Heller et al. (2012) ^[26]	RCT	Neutral	20	Healthy adults	8 g and 16 g/day powdered mushroom over 3 days	Placebo	↓ oxygen radical absorbance capacity ↑ ergothioneine
2	3 Satiety	Hess et al. (2017) ^[27]	RCT	Neutral	70	Healthy adults	226 g/day mushrooms for 10 days	Beef (kJ and protein matched)	↑ satiety ↔ energy intake
		Cheskin et al. (2008) ^[28]	RCT	Neutral	152	Healthy adults	1418 kJ/day white button mushrooms for 4 days	Beef (volume matched)	↓ energy intake ↔ satiety
	4 Cancer risk & its metabolites	Lee et al. (2013) ^[29]	Case- control	Higher	1000	Cases of ovarian cancer	N/A	Healthy adults (no ovarian cancer)	↓ ovarian cancer risk at intakes >2 g/day after 2 years
		Twardoski et al. (2015) ^[30]	Phase 1 trial	Higher	36	Adults with elevated prostate specific antigen	4-14 g/day powdered white button for 10 months	N/A	↓ prostate specific antigen
	5 Gut health	Hess et al. (2018) ^[31]	RCT	Neutral	70	Healthy adults	226 g/day mushrooms for 10 days	Beef (kJ matched)	† faecal weight and microbiota composition
		Nishihira et al. (2017) ^[32]	RCT	Lower	80	Adults with problematic halitosis, faecal or body odour	50 to 1000 mg/day mushroom extract for 4 weeks	Placebo	↓ odour and bowel strain
\bigcirc	6 Cardiometabolic markers	Abd-alwahad et al. (2018) ^[33]	Non- randomised trial	Lower	50	Not specified	2 g/kg body weight mushroom (in olive oil) /day for 30 days	Usual diet	↓ glucose, LDL cholesterol, triglycerides, body weight ↑ HDL cholesterol
		Weigand-Heller et al. (2018) ^[26]	RCT	Neutral	20	Healthy adults	8 or 16 g/day powdered mushrooms for 3 days	Placebo	↔ cholesterol and triglycerides
(7 Immune function	Jeong et al. (2018) ^[34]	RCT	Higher	20	Healthy adults	100 g/day white button mushrooms for 7 days	Usual diet	↑ salivary igA secretion

Memorable mushroom messages

Bioactive Properties

Nutrition allrounder

Mushrooms provide nutrients found not only in vegetables, but in meat and whole grains too.

The special sterol

Mushrooms contain a unique sterol called ergosterol, that converts to vitamin D when exposed to light.

Beta-ful on the inside

The cell wall of mushrooms consists of the soluble fibre beta-glucan.

Unparalleled prebiotic

Mushrooms contain chitin, a unique prebiotic fibre that's not found in fruits, vegetables or grains.

First for ergothioneine

Mushrooms contain more ergothioneine (a unique antioxidant) than any other food.

Health Benefits

Fill up with fungi

Swapping beef for mushrooms has been shown to lower calorie intake, with no difference to satiety.

Nature's supplement

UV-exposed mushrooms can be as effective as a vitamin D supplement.

Healthy heart

Mushrooms cooked in extra virgin olive oil may help to improve markers of heart health.

Your gut bacteria loves them

Mushrooms contain special prebiotics which feed your gut bacteria.

Tan your mushrooms

Putting 1 cup in the sun for 15 mins can provide you with your daily vitamin D needs.

- Royse. ICAR-Directorate of Mushroom Research; 2014. p. 1-6.
- Akyuz et al. Curr Top Nutraceutical Res. 2012;10(2):133-6. Ng & Tan. J Food Sci Technol. 2017;54(12):4100-11.
- Ganguli et al. J Culin Sci Technol. 2006;5(2):131-42. El Khoury et al. J Nutr Metab. 2012;2012:851362.
- Dikeman et al. J Agric Food Chem. 2005;53:1130-8 Ruiz-Herrera & Ortiz-Castellanos. The Cell Surface. 2019;5:100022.
- Kouřímská & Adámková, NFS J. 2016;4:22-6.
- Manzi et al. Food Chem. 2001;73(3):321-5.
- Cardwell et al. Nutrients. 2018;10(10):1498. FSANZ. Australian Food Composition Database Release 1. 2019.
- Loznjak et al. Food Chem. 2018;254:144-9. Halliwell et al. FEBS Lett. 2018;592(20):3357-66. Jasinghe & Perera. Food Chem. 2005;92(3):541-6.
- Shao et al. J Agric Food Chem. 2010;58(22):11616-25.
- Sapozhnikova et al. J Agric Food Chem. 2014;62(14):3034-42. Babu & Rao. J Food Sci Technol. 2011;50(2):301-8.
- Buruleanu et al. Anal Lett. 2018;51(7):1039-59. Sari et al. Food Chem. 2017;216:45-51.
- Stephensen et al. J Nutr. 2012;142(7):1246-52. Keegan et al. Dermatoendocrinol. 2013;5(1):165-76.
- 22. 23. Urbain et al. Eur J Clin Nutr. 2011;65(8):965-71. Shanely et al. J Sports Sci. 2014;32(7):670-9.
- Calvo et al. Plant Food Hum Nutr. 2016;71(3):245-51. Volman et al. Eur J Clin Nutr. 2010;64(7):720-6.
- Weigand-Heller et al. Prev Med. 2012;54 Suppl:S75-8. Hess et al. Appetite. 2017;117:179-85.
- Cheskin et al. Appetite. 2008;51(1):50-7. Lee et al. Int J Gynecol Cancer. 2013;23(8):1400-5.
- Twardowski et al. Cancer. 2015;121(17):2942-50. Hess et al. Nutrients. 2018;10(10):02.

- Nishihira et al. J Tradit Complemt Med. 2017;7(1):110-6. Abd-Alwahab et al. EurAsian J BioSci. 2018;12(2):393-7.
- Jeong et al. Nutrition. 2011;28(5):527-31.

NRAUS

nr_aus

in Nutrition Research Australia

info@nraus.com

Australian MUSHR MS

- w australianmushrooms.com.au
- Australian Mushrooms
- australianmushrooms
- Australian Mushrooms

This project has been funded by Hort Innovation, using the Mushroom Fund research and development levy and contri-butions from the Australian Government. Hort Innovation is the grower-owned, not-for-profit research and development corporation for Australian horticulture.

